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Resumo

Obtivemos a energia de interagéo efetiva entre duas impurezas idbnicas em um mar de elé-
trons. As impurezas sdo representadas por orbitais localizados 4f!, que se hibridizam
com uma banda de conducdo metdlica simétrica. Foi utilizado o formalismo de Coqgblin-
Schrieffer,! porém nZo restrito ao limite assintético de ions muito afastados entre si, como
usual na literatura,’™ mas sim valido para quaisquer separagoes idnicas. Também reestabe-
lecemos a simetria de troca do sistema para ions idénticos e recuperamos a hermiticidade
do Hamiltoniano efetivo ausente no procedimento original de Coqblin-Schrieffer™ Essas
corregdes impactam significativamente nas contribuigbes de cada componente do momento
angular j = 5/2 para a energia efetiva de interacdo e consequentemente no ordenamento
ferromagnético ou anti-ferromagnético dos momentos localizados. Nossos resultados mos-
tram que todas as componentes exibem oscilacdo de Friedel, mesmo no limite assintético,

e ndo apenas aquelas com m; = +1/2 como apregoado na literatura.

Palavra-chave: Formalismo de Cogblin-Schrieffer. Interagdo RKKY. Cério.
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1 Introducao

O magnetismo de materiais contendo momentos magnéticos localizados, como por exem-
plo, em CeSb e CeBi, ou compostos semicondutores como CeOs,Al,, e CeRu,Al,,, sdo
de grande interesse e de longa data vem sendo abordado por diferentes modelos teoricos.
Anisotropias, temperaturas criticas anémalas e outras propriedades s&o atribuidas as inte-
racdes entre momentos localizados, cuja origem vem da superposicao destes com estados
itinerantes de elétrons em banda de conduc¢ao. Nosso objetivo é abordar o particular meca-
nismo de interacao ilustrado na Figura (1) abaixo. Nele, um elétron localizado (linha cheia)
no ion (1) passa para a banda de conducao (linha sinuosa), por meio da hibridizacao (e),
e em seguida passa para o estado localizado no ion (2). A¢cdo semelhante ocorre na pas-
sagem de um elétron localizado em (2) para o ion (1). Isso resulta numa interacdo indireta
entre os dois ions, denominada RKKY, considerada um importante mecanismo, junto com
efeitos de campo cristalino, na explicacdo do magnetismo da matéria. Essa foi a suges-
tdo de Siemann e Coopper em 1979,2 que utilizaram o formalismo de Coqblin e Schrieffer
(CS)," o qual leva em conta nao apenas graus de liberdade de spin, mas orbitais, especifica-
mente orbitais 4 f!, e portanto momentos angulares j = 5/2 ou 7/2. Uma caracteristica que
se perpetuou apos esses trabalhos pioneiros é a de considerar o limite assintético de ions
muito afastados entre si, o que simplifica consideravelmente o calculo de certas integrais
envolvendo fungdes de Bessel esféricas. Em particular, isso levou a conclusdo que apenas
os estados com componente de momento angular +1/2 contribuem para a energia efetiva
de interagdo RKKY.22 Utilizando integragdes no plano complexo e codigos de manipulagéo
simbolica, fomos capazes de resolver exatamente e de forma analitica essas integrais, e
portanto quantificar a contribuicdo de cada componente de momento angular a interacao
efetiva, para qualquer separagao iénica. No curso dessa andlise descobrimos que a formu-
lacéo original de CS nao é invariante pela troca das posi¢des dos dois ions, mesmo quando
idénticos. Nossa formulagédo contempla essa simetria. Seguimos de perto os procedimen-
tos de Coqblin-Scrieffer, que considera como ponto de partida o Modelo de Anderson para
uma impureza magnética embebida em uma banda de condugéo. Por meio de uma transfor-
magéao de Schrieffer-Wolff, introduz o Hamiltoniano Kondo para uma impureza de spin-1/2.

ApGs transcrever esse Hamiltoniano para um sistema com graus de liberdade orbital, define-



se um acoplamento efetivo entre impurezas adjacentes. Isso ira determinar a energia de
interacdo como fungédo da separacao e das componentes individuais de momento angular

de cada impureza.
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Figura 1: Processo analisado neste trabalho em que elétrons localizados (linhas continuas) em
fons adjacentes passam para a banda de condugdo (linhas sinuosas) e vice-versa, gerando um
acoplamento efetivo entre os jons. As componentes = do momento angular total dos ions, m e m/,
s&o trocadas no processo. Fonte: Elaborada pelo autor.

1.1 Modelo de Anderson e a Transformacao de Schrieffer-Wolff

Nosso interesse é estudar sistemas com impurezas magnéticas interagindo com elétrons
itinerantes e construir um Hamiltoniano efetivo de interacao entre pares de impurezas. O
Hamiltoniano do sistema tera trés contribuigées: H = Hyapnno + Himp + Himp+banko- NO modelo

proposto por P. W. Anderson em 1961, tem-se

Hbanho = ZGECEUCEJ7 (1)

ko
Himp = Y esfifs + USRI (2)
Himp+banho = ZVE(CL’UfU—i_f;CEU) ) (3)

ko
sendo que o termo H,..,, descreve uma banda de condugéo ndo magnética, onde ¢; € a
energia cinética de um elétron com vetor de onda k. O termo H,;., € composto da energia
do estado localizado ¢, e da energia U relacionada a dupla ocupaco desse estado, sendo
que U é da ordem de 6eV para orbitais tipo 4 f° O termo H,,,,+vanno descreve a hibridizagdo
entre a banda de condugéo e os estados localizados, maior responsavel pelo acoplamento
efetivo entre impurezas adjacentes. A Figura (2) esquematiza o Modelo de Anderson.

Em paralelo aos primeiros desenvolvimentos obtidos através do Modelo de Ander-
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Figura 2: (a): Modelo de Anderson em que uma banda de condugao de largura 2D semi preenchida
interage com um estado localizado via um termo de hibridizagdo V. O estado localizado pode
ter ocupagdo nula, cuja energia é proxima a de Fermi, ocupag&o unica, com energia €y, ou dupla
ocupagdo, com energia 2¢; + U. Fonte: Elaborada pelo autor. (b): Processos de transferéncia
eletrénica que contribuem para o Efeito Kondo. Fonte: KHOMSKI.

son, Jun Kondo, em 1964, conseguiu elucidar o chamado Efeito Kondo, observado pela
primeira vez na década de 1930, que consiste num minimo na resistividade elétrica de li-
gas metalicas ndo magnéticas, como de C'u ou Au, contendo impurezas magnéticas, como
Fe ou Mn!f Kondo constatou que esse minimo era consequéncia direta da formacgao de
uma nuvem eletrénica ao redor do ion magnético em configuragéo anti-ferromagnética. O

Hamiltoniano que descreve essa interagao é conhecido como Hamiltoniano Kondo:

HK:ZGEC,TQUCEU_Jg'g : (4)
ko
onde J < 0 (comportamento anti-ferromagnético) é a integral de troca (exchange), s é a
densidade de spin dos elétrons de conducao na posi¢cao do spin da impureza S.
Em 1966, J. R. Schrieffer e P. A. Wolff” propuseram uma importante transformacao so-
bre o Hamiltoniano de Anderson que elimina em primeira ordem em V' o termo n&o diagonal

Himp+vanno- O Hamiltoniano transformado passou a ser escrito como
1
Hy = e He® = Hyp = Hy+ 519 Hv] + oWV?) (5)

onde Hy = Himpibanhos Ho = Himp + Heanno € S € 0 gerador da Transformacéo de Schrieffer-

Wolff, o qual é obtido da relagéo [S, Hy) = —Hy . O célculo de S é motivo de atengéo ainda



hoje, como pode ser visto em Ref. (8) e (9), mas em geral € expresso como

- Vz
f t t
_ 1— o))k fo+he . 6
5 Z(G#_ef_ Flafort (1= flof0) ) e fo+ e ©)

Utilizando essa expressao em (5), no limite de U muito grande, aparece, entre outros
termos, o Hamiltoniano Kondo dado em (4). Ambas as transigdes exemplificadas na Fi-
gura (2b) contribuem para a interacao, contudo a dupla ocupacao (transicao 2) requer uma

energia U para ocorrer, a qual € muito grande,>® logo o termo Kondo prevalece.”

1.2 A Interacao RKKY

A discussao da secao anterior € mais apropriada para estados tipo f, mais localizados que
os de tipo d, portanto com valores de hibridizacdo moderados. Se aplica, entdo, a com-
postos a base de Cério, um lantanideo com configuracéo eletrénica [Xe|4f!5d'6s%. Seus
orbitais 5d e 6s sao formadores de banda de conducéo, e podem se hibridizar com o orbital
4f, sendo a interagao 5d — 4f mais intensa que a interagéo 6s — 4f.1% Como pode ser visto
na Figura (3a), o orbital 4f, o qual é responsavel pelo magnetismo, é muito localizado, tendo
seu pico de densidade a pouco menos de um raio de Bohr do nucleo. Portanto, tal estado

pode ser considerado como o de um ion livre.

(a) (b)

Figura 3: (a):Densidade de probabilidade das fungées de onda do Cério, configuragdo
[Xe]dfl5d'6s. Podemos notar o qudo localizado & o nivel 4 f quando comparado aos demais. Fonte:
HEWSON  (b): Polarizacdo dos spins dos elétrons de condug¢éo ao redor de uma impureza mag-
nética, induzindo uma interagdo, chamada de RKKY, entre dois momentos localizados adjacentes.
Fonte: COLEMAN1Z



Sendo esses orbitais f tao localizados, eles néo interagem diretamente entre si num
composto, mas podem interagir através de um mecanismo de troca, conhecido por intera-
cdo RKKY, proposto inicialmente por M. A. Ruderman e C. Kitell em 1954%3 no contexto da
interacao entre spins nucleares mediada por elétrons de condugao, em seguida estendida
por T. Kasuya'* e Kei Yosida.™® Nessa interacgéo, elétrons, ao interagirem com um dos esta-
dos localizados por meio da hibridizacéo V, se polarizam, como no Efeito Kondo, de forma
anti-ferromagnética nas proximidades do ion; tal polarizacdo oscila de forma amortecida
com a distancia do ion polarizador (oscilagéo de Friedel).>©' Qutro ion nas proximidades
do primeiro sera capaz de sentir essa polarizagao, assim gerando um acoplamento efetivo

entre ambos, o qual € de quarta ordem na hibridizacao.



2 Procedimento de Coqblin-Schrieffer

B. Cogblin e J. R. Schrieffer desenvolveram um formalismo que leva em conta graus de
liberdade orbitais e de spin da impureza, portanto capaz de tratar o caso de orbitais f. Eles
partem do Hamiltoniano de Anderson com operadores escritos em termos das componen-
tes z dos momentos angulares [ = 3 (nivel f) e de spin 1/2. Seguiremos aqui um caminho
alternativo, mais curto, para alcancar o mesmo resultado. Como vimos na sec¢éo anterior, a
Transformagéo de Schrieffer-Wolf aplicada ao Hamiltoniano de Anderson resulta no Hamil-
toniano Kondo. Partiremos desse Hamiltoniano e de forma conveniente vamos reescrevé-lo

em termos de operadores de momento angular.

2.1 Hamiltoniano de Interacao de Troca

Para os casos de spin 1/2, os operadores 5 e S do Hamiltoniano Kondo, Eq. , podem ser

expressos em termos dos operadores fermionicos f, e Pyt
TR R I
S = 5 Z f,uo—,uufu e s= 5 Z CEMO_}U/cle > (7)
vp Etj'l/u
sendo & as matrizes de Pauli. Desta forma, calculando o produto em (4), encontramos
Ot
H=) e, =T D Gt (fifo' - %Zf}ffaff) - ®)
ko E,(T,a,a’ a”

A dinamica contida nesse Hamiltoniano é ilustrada na Fig. (4).

<> — @ ou <>:¢
Figura 4: Interacao descrita pelo Hamiltoniano @ quando (a) ha troca de componentes de spin
entre o momento localizado (em azul) e o elétron de conducado (em vermelho) e (b) quando nao ha
froca de componentes. Termos diretos, como (c%cﬁ + C%iqu)( f; fr + fl f1), ndo comparecem no
Hamiltoniano Kondo. Fonte: Elaborada pelo autor.
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Queremos transcrever a Eq. para 0 nosso problema, que envolve elétrons de con-
ducdo com spin 1/2 e elétrons localizados com momento angular j, podendo ser j = 5/2
ou 7/2, resultado da soma de momento angular orbital [ = 3 (orbital f) com spin 1/2. O
multipleto j = 7/2 é desconsiderado na andlise por ter energia maior que o primeiro por
aproximadamente 0.30 eV® Procedemos em duas etapas, primeiro trocando o = +1/2
por |m| < 5/2. Porém, [J,,p] = [L.,p] # 0 0 que ndo permite conhecer a componente
z do momento angular total, m, e o vetor momento linear do elétron de conducao, E, Si-
multaneamente,’® e portanto, usar ambos os indices na soma em . Mas sabemos que
[J%,p?] = [J.,p*] = 0, 0 que nos permite conhecer simultaneamente j, m e k. Entdo, a

transcricao da Eq. fica (note que € o mdédulo de k que aparece nos operadores)

H = Zﬁkckmckm J Z Ckmlcqm <f fm 2m_'7_n’1 Z f me”) ) (9)

k,q,m,m’

sendo o fator 2 + 1 resultado do fato do Hamiltoniano acima ndo descrever interacdes
diretas, o que leva ao trago do mesmo ser nulo (ver legenda da Fig. (4)).
Na segunda etapa da transcri¢gao, escrevemos os operadores de condugao cy,, € ch

de volta na base de ondas planas, usando a relagao ¢}, = 3" (ko|km) cj;a:"16

H=Y eclc.— > Jmm/ cter, O™ (10)

kqaa mm/

onde
== T r — n Jm!" .
(fmfm 2;+1 Z fwnf ) (11)
e
T, = J{kolkm){qm'|go") . (12)

Para explicitar a dependéncia angular desse termo de interacao, vamos escrever o es-
tado de onda plana |ko) na base das ondas parciais |k, [, m;, o), onde m, é a componente =

do momento angular orbital, |m,| < [, e o € a componente z do spin do elétron de condugao.
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Portanto o estado |ko) escrito em termos de |k, 1, m;, o) é

ko) = Var > iV, (B) kL, o) (13)

l7ml

onde V..., (k) é a fungdo Harménico Esféricol No caso do orbital 4f! os coeficientes de
Clebsch-Gordan para a escrita de |km) na base de |k, [, m;,0) sd0 a,, = /(7+2m)/14
e Bm = +/(7T—2m)/14, onde m € a componente z do momentum angular total, |m| < j.

Portanto, obtemos
|km) = ap|k,3,m +1/2,—1/2) + Bulk,3,m —1/2,4+1/2) . (14)
Levando ambas as relagbes acima em temos

j,g{’:, = drJ (Oém/ y37m’+1/2<a) 50',—1/2 + B y3,m/—1/2(51\) 50/,1/2) )

R R (15)
(0 V1o (B) a2+ B Vi s jo(R) G )

As Eq. (10), c concordam exatamente com as de Cogblin-Schrieffer No
entanto, esses autores ndo obedeceram a seguinte propriedade:

(o) =g # g, (16)

kq,o0’ gk,o'o Eq‘,aa

0 que acarretou a falta de simetria por intercambio dos ions e a ndo hermiticidade do Ha-
miltoniano efetivo obtido por eles. A Ref. (3) menciona brevemente a falta da hermiticidade
e simplesmente simetriza o Hamiltoniano® Nosso procedimento a seguir, no entanto, é

naturalmente livre dessas falhas.

2.2 Interacao RKKY entre duas impurezas

Até agora tratamos o problema em que existe apenas uma impureza "mergulhada" em um
mar de elétrons de condugéo e cuja Fisica é dada pelo Hamiltoniano (10). Contudo, que-

remos calcular como duas impurezas interagem entre si por meio da polarizagao dos spins

aDescobrimos essa referéncia ha poucos dias do término desta monografia.
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dos elétrons de conducéo, a interacdo RKKY. Para isso devemos acrescentar na equacao
(10) a segunda impureza fazendo a substituicdo dos operadores de condugéo c;_, que des-
troem elétrons na origem, por ¢*fnc. . que destroem elétrons na posicao R,. Desta forma,

0 segundo termo do Hamiltoniano em fica

znt - Z ZZJI:ZUTZ Z }g’cﬁgog,m/ . (17)

k.q7o.a.l mm/ n=1

Como estamos interessados apenas na interacao efetiva entre duas impurezas, toma-
mos o traco parcial do operador acima com relagdo aos elétrons de conducgao. Isso define

o Hamiltoniano
Hyy =Y ((ko| Hinlko))gg (18)
ko
onde a fungéo de Fermi g; expressa que a soma € sobre estados ocupados. \Ea)> € um
estado de onda plana que leva em conta a interacao H,,;. Por teoria de perturbacao de

primeira ordem nos estados de ondas planas, temos

que substituindo em resulta em?

ko|H; a0 (o' | iyl ko

EE_'S(T

H12 =

E(T,O’O’l

Utilizando (17) calculamos os elementos de matriz presentes em Hs:

(FolHinlio') = > Tyl eI RO (21)
MM'n
(G0 | Hilko) = > gre Eafmomm . (22)

mm/n
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Efetuando a soma sobre n encontramos

H]_Q — Z Z gkﬂ_ gq ‘7 jMM (OMM Omm OéW,M’o;n,m/+

kqoo’ = qko'o
€7 q q
Eq’,oa’ MM’ mm/ (23)

ei(E—q)-ﬁO{W,M/Ogn,m’ 4 e—i(lz—q’).ﬁoin,m/oé\/[,M/) 7
onde & = R, — . Esse Hamiltoniano exibe a simetria Hy,(—R) = Hy,(R) gragas a propri-
edade (O™t = O™ o que leva a Hl, = Hy, como deveria ser. No trabalho pioneiro de
Coqgblin-Schrieffer essa simetria ndo é satisfeita e nem o Hamiltoniano é hermitiano! Essas
falhas, no entanto, sdo de muito pouca relevancia no limite assintotico kR — oo tratado
por eles, e em trabalhos subsequentes até onde conhecemos.

No Hamiltoniano H,, temos todas as trocas de m e m' possiveis, inclusive aquelas
descorrelacionadas entre as impurezas. Contudo, estamos interessados em uma forma es-
pecifica, aguela mostrada na Fig. (1), onde as impurezas trocam entre si suas componentes
z do momento angular total. Precisamos, portanto, extrair de o termo do Hamiltoniano
que descreve esse processo de interesse levando em conta a conservacdao do momento
angular total, garantida pelo fato da banda de condugéo ser simétrica ao redor do eixo de
quantizagdo>'” Através de mudangas convenientes nos indices da soma em Eq. ,

ficamos com o seguinte Hamiltoniano efetivo:

Hep =" Aprm O 05 (24)

m,m/

com

2 ez(lzftj')ﬁ ‘jm m

kqoo’

A (R) = 3 T “jmm

[P kqoo’
€ — €5 q

i(lZ(j’)-ﬁ] : (25)
kG,oo’
onde usamos que o termo g;gq/ (e — €7) presente em nao contribui a soma por ser
impar pela troca de k por ¢ (e também devido a propriedade expressa em ).

Anwm(R) é a energia de interacdo (as vezes denominada de amplitude de espalha-
mento) em fungcdo da separacao R entre os ions associada a troca m/ para m no ion em
R, e a correspondente troca de m para m’ no ion em R,. Podemos melhorar o formato de

(25) expandindo as ondas planas em termos dos Polinémios de Legendre, P;(cosf), e das



14

Funcdes de Bessel Esféricas, j;(kr):
ek = Z i'(20 + 1)y (kr)Py(cosf) . (26)
=0

O fator i' nessa expressao foi esquecido por Coqgblin e Schrieffer em,* o que levou a erros
na energia final. Tal falha foi detectada e reparada por Siemann e Cooper em 1980.2 Desta
forma, a Eq. fica

A (B) = > @+ 1) (20 +1) Y = ji(kR)ju(aR)

€ — €7
L kgoo’ k 1 (27)
Picos(80)) P (cos(8,) 1T+ (~1)/ 1720 ).

Podemos trocar as somas sobre k e ¢ presentes em por integrais, ja que 0s
elétrons estdo numa banda de conducao de largura aproximada de 10 eV e sao da ordem

de 10% em nUmero:

V .
> = (27)3/dk : (28)

-

k
Com isso e usando a relagédo de dispersdo para elétrons livres, ¢; = h’k?/2m*, onde
m* € a massa efetiva dos elétrons de conducéo, encontramos a expressao final para a

energia de interagdo A, .,:

V2m* J? 1l )
Aprm(R) = ——— Z (=1)= (20 + 1) (2" + 1) By By (Lp + Iiy) (29)
2 RY
=024
onde
B = 02, C" % 4 g2 o (30)
com
o = / P(cost) [Y"(0, 6)[* d9 (31)

coeficientes (de Slater), que pela regra de soma de trés momentos angulares, sao néo

nulos apenas para [ = 0,2, 4 ou 6.1218 No Apéndice A listamos os valores de C;" bem como
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resultados para B, ,,. E facil ver que B, _,, = By, 0 que acarreta A, = Al jm|- O calculo
explicito usando as tabelas do Apéndice A mostra que Bg,, sao todos nulos, o que justifica
os indices de soma em (29) correrem apenas para [l = 0,2 ou 4.

Em foram também definidas as integrais

k‘FR o0 x/2
Liy(R) = 22y (x)dx ———jv(2')ds’ | (32)
0 0 I2 2

cujos resultados analiticos se encontram no Apéndice B. No formalismo de Cogblin e Sch-
rieffer,’ e nos trabalhos que se seguiram,>® somente o limite assintético R — oo dessas
integrais foram utilizados.

O procedimento de Cogblin-Schrieffer! (ja corrigido pelo fator )% levou a seguinte
expressao para a energia de interagcao entre os estados localizados:

V2m* J2

PR = e

> ()2 @20+ 1)(2 + 1) Byn By T (33)
1,I'=0,2,4
onde os coeficientes B, ,,, e I;(R) sd0 0s mesmos que em e (32). Encontraram ainda
0 seguinte Hamiltoniano para a interagcao entre as impurezas (0 correspondente do nosso
Hamiltoniano em (24)):

H) =Y E"™R) 0705 (34)
o

E facil observar que a expressdo para a energia em 1) carrega uma propriedade

que viola o fato dos ions serem idénticos: E™"™ # E™ ™, |sso acarreta diretamente na ndo
hermiticidade do Hamiltoniano acima: H,," # H/,. Essa falha vem da néo observagéo da
desigualdade mostrada em (16). No entanto, ela é pouco importante no limite assintético
por isso, achamos, nunca chamou atenc¢ao dos que nos precederam. Note que a energia
de interagéo A, € a forma simetrizada de £™™': o aparecimento de I + I;;; em , ao
invés de I, como em (33), é o que garante a simetria de troca dos ions, a hermiticidade de
H.;, além de cancelar termos n&o oscilatérios em kxR e assim recuperar a forma tipica de

interagdes RKKY, como veremos em detalhe abaixo.
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Tomando as func¢des de Bessel Esféricas no limite assintotico, R — oo,

. sen(kR
as integrais em sdo facilmente resolvidas:
Ly(R) =k (—1)0+/2 cos(2kp R) (36)

(2krR)?

Substituindo em (33), a energia de interagdo para ions muito separados &, portanto,

m,m’ V277/l*<]2k;17 ’ COS(Q]{?FR)
Ecg" (R) = (W) G(m,m’) “OhpRP R — oo, (37)
onde
G(m,m')=> (21 +1)Bim > (2 + 1)Bip (38)

l 4
cujos unicos valores ndo nulos sado G(+1/2,£1/2) = 9, isto é, para m = +1/2, ou seja,
estados com m; = 0, como pode ser facilmente obtido usando (40). Isso concorda com o
célculo da Ref. (2), que interpreta que nesse limite assintotico apenas os estados com maior
densidade de carga eletrdnica na linha que une os orbitais localizados devem contribuir, e
esses sao os estados com m; = 0, aqueles com simetria esférica. A expressao mostra o
comportamento assintético cos(2krR)/R? da interagdo RKKY, bem conhecido dos sistemas

com impurezas de spin.
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3 Resultados

As nove integrais definidas em e listadas no Apéndice B sdo a grande dificuldade
do calculo para as energias de interacao exatas. Tais integrais envolvem funcdes nao muito
triviais, as Funcoes de Bessel Esféricas, e singularidades no eixo dos reais, 0 que nos levou
a célculos usando o plano complexo, além de fazer uso de ferramentas computacionais
como o Wolfram e o Maple. O calculo exato, contudo, permite que calculemos as energias

de interagéo A,, . (R) para qualquer separagao inter-iénica R.

600 T T T T T T T T T
500 A12,172 0.5f 1
- A
200l 12,312
200 —= Aipsp
— Asp,3p2 ~
2008 . Az, 5P \
-~ \
c 100r —— Asp s5p )
Ly | -
N Kt
3 4 6 7 8 9 10 11 12 13 14 15

5
keR
Figura 5: Energias de Interagdo A, ,,, em unidades arbitrarias, para diferentes pares m e m'. A
escala do eixo vertical foi modificada com a distancia para melhor visualizar as mudangas ao longo

do intervalo de interesse. As demais componentes sao obtidas da relagao A, ;m = Ap' m = A/, jm|-
Fonte: Elaborada pelo autor.

Na Figura (5) temos nosso resultado principal, as energias de interagdo em fungao
da separacao entre os ions para diferentes pares m € m/. Sinais negativos (positivos) de
A, indicam ordenamento ferromagnético (anti-ferromagnético). Desta forma, podemos
observar que o ordenamento oscila em fungédo da separacao, o que ja era esperado, visto

que os ions polarizam os elétrons de condugéo de forma que as dire¢gdes dos seus spins
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oscilam (oscilagdo de Friedel) em funcdo da distancia aos ions.

Para kxR < 1 0 ordenamento é sempre ferromagnético para todos os m e m'. Isso por-
que os elétrons de condugéo ordenam-se ao redor da impureza de forma anti-ferromagnética,
portanto, quando os ions estdo muito proximos suas nuvens de elétrons de conducéao se
sobrepdem favorecendo o ordenamento dos estados localizados na mesma direcao. Nessa
regido podemos ainda notar que as componentes m = +5/2 dominam sobre as demais; as
menores sdo as associadas a m = +3/2.

Naregidaode 2 < krR < 5 0s termos oscilatérios ganham forca. A energia de interacéo
Ays/2.45/2 domina sobre as demais até por volta de kxR = 3, onde a partir desse ponto vai a
zero rapidamente, dado que € a componente que menos favorece o empilhamento de carga
sobre o eixo. Para as outras componentes temos um ordenamento anti-ferromagnético na

maior parte dessa regiéo.

3 T T T T T T T T T T T
— Aip,1p

5 n e El2
1 n |

N

o ]

—

N 0

S~

< ]
_1 u |
_2 ’

=35 6 7 8 9 10 12 14 16 18 20 25 30 35 40

kKeR

Figura 6: Energia de Interagdo A, 1> (linha continua) e Energia de Interagao E/>'/? no limite
assintdtico (linha tracejada), R — oo. Podemos observar que o resultado assintdtico é compativel,
em amplitude e fase, com o resultado exato para valores de Kr R > 20. Fonte: Elaborada pelo autor.

Em 5 < krR < 10 as energias relacionadas a m = +5/2 sao muito pequenas, sendo
Ays/.43/2 dominante para 5 < kpR < 6 € com um comportamento fortemente ferromagné-

tico. Apés esse intervalo, por volta de kp R ~ 7, a componente A/, 11/, Se torna dominante
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seguida de perto pelas componentes A. /s 13/2.
Para a regido de kxR > 10 ganhamos o limite assint6tico ja conhecido e calculado

em? onde a componente Ai1/2.41/2 € a dominante, alternando o ordenamento magnético
com a separagao iénica. Podemos ainda identificar a presencga das componentes A, /s 13/2
e Ais,+32 €M ordem de importancia, com a segunda tendo uma amplitude de apenas
aproximadamente um quarto da componente dominante A,/ +1/2, Sendo, portanto, rele-
vante em calculos mais finos do ordenamento a longas distancias.
Os valores tipicos de kxR para os compostos de interesse estdo em kpR > 10, re-
giao na qual a componente A4/, +1/» domina sobre as demais, entretanto, a componente
A11/2,1+3/2 POSsui uma amplitude de aproximadamente um quarto da amplitude de A5 +1/2

fazendo-se, assim, importante considerar essa componente em calculos mais precisos.

15 : : : : : : : :
Ll — Aipzz |
_____ E1/2,3/2
5. 1 :
] |
) |
N O N ~———
S~
— I i
< 'l ,——””—
_5_: //” 7
I -
] //
] /
—1o-|; -1.0r ]
: 12 14 16 18 20

"% 2 4 6 8§ 10
keR

Figura 7: Energia de interagdo A, ;, 3/, exata (linha continua) onde se vé a tipica oscilagdo RKKY.
Ja a energia de interacdo E'/%3/2 (linha pontilhada), diferentemente, exibe apenas comportamento

ferromagnético no limite assintotico. Fonte: Elaborada pelo autor.
Na Figura (6) comparamos o limite assintético, dado pela Eq. (37), com a solugéo

exata para m = m’ = £1/2. Podemos observar que na regido de kxR < 10 ambas as
energias discordam tanto em amplitude quanto em fase, portanto, a aproximagéo em

nao € muito boa, sendo necessario incluir outros termos nesta equacao. Contudo, na regiao
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de kxR > 10 as amplitudes comecam a se igualar e entrar em fase com o aumento de R.
E nessa regido que se encontram os valores tipicos de kxR e, portanto, a aproximagao
feita na literatura é boa, mas para uma analise quantitativa mais fina necessita-se, além de
outras componentes que ndo a m + 1/2, de corregdes relevantes, ja que a aproximagao
somente é satisfatéria para krR > 20.

Se a componente diagonal E'/>'/2 no limite assintético ndo vai mal, 0 mesmo néo
podemos dizer das ndo diagonais. A Fig. (7) mostra que para |m| = 1/2 e |m/| = 3/2 0
resultado exato exibe a oscilacdo caracteristica da interagdo RKKY, reflexo da oscilagdo de
Friedel, enquanto £'/%%/2 comporta-se exclusivamente de forma ferromagnética para além

de krR =~ 3. Esse padrao se repete para outras componentes ndo diagonais.
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4 Conclusao

Calculamos a energia de interagao entre dois ions separados por uma distancia R utilizando
o formalismo de Coqplin-Schrieffer,” sem se restringir ao limite assintético, R — oo. Nosso
procedimento preserva a simetria de troca dos ions e a hermiticidade do Hamiltoniano efe-
tivo. A solucéo exata das integrais em nos possibilitou investigar o ordenamento mag-
nético dos ions em funcao de sua separacéo e inferir a contribuicdo de cada componente de
j = 5/2 para a energia. No limite assintotico recuperamos os resultados conhecidos da lite-
ratura, que mostram a predominancia das componentes diagonais m = m’ = +1/2 sobre as
demais. Ainda nesse limite, nossa expressao para as componentes ndo diagonais exibem
o comportamento oscilatorio tipico de interagdes RKKY, diferentemente do procedimento
original de Cogblin-Schrieffer. O proximo passo de interesse é aplicar uma rotagéo no eixo
de quantizacao que une ambos os ions para uma direcdo comum no cristal, e assim poder
fazer uma analise do ordenamento magnético do composto como um todo.?” A matriz de
rotacdo ir4 misturar todas as componentes A4,, ./, € por isso o calculo exato, para qualquer

valor de kxR, sera de grande valia.
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Apéndice A: Os coeficientes C|" e By,

Os coeficientes €], definidos em , sdo as integrais de Slater,’® facilmente calculaveis
para os primeiros valores de [. Da regra de soma de trés Harménicos Esféricos temos que
Cim # 0 apenas paral =0,2,4 ou 6 e |m| < 317 E facil ver que C;y = 1 e que C; _,, = Ci..
Essas propriedades séo herdadas pelos coeficientes B;,, (nestes |m| < 5/2), implicando
que By,, = 1 e B,_,, = B;,,. Os valores de interesse para os coeficientes C;" e By, so
encontrados na Tabela (1) abaixo, onde vemos que todos os coeficientes Bs ,,, S840 nulos, o
que acarreta em significativa economia de calculo, uma vez que ndo ha necessidade de se

calcular as extensas integrais [, /(R) para [ e/ou !’ iguais a 6.

Tabela 1: Coeficientes B, ,,, (esquerda) necessarios em . E coeficientes C;,, (direita).

mi| 0 2 4 6
mil| O 2 4 6
21 835 535370 0| 1 4/15 6/33  100/429
1 1 15 1733  -75/429
32 1 470 /7 0
52 1 27 121 0 2| 1 0  -7/33  30/429
3 1 -1/3  3/33  -5/429

Fonte: Elaborada pelo autor (esquerda). SLATER'® (direita).

Algumas propriedades algébricas, obtidas por nos, para os coeficientes By, sS40 mos-

tradas a seguir:

5/2
2 Y Biy =T760— C)+ (1= 610) (760 + C7) (39)
m=1/2
6
Z(Zl + 1)Blm = 7a,2n5m+1/2,0 + 763,157,1,1/2’0 . (40)

=0

A primeira propriedade é consequéncia direta do Teorema da Soma de Harménicos
Esféricos, enquanto a segunda é consequéncia da ortogonalidade dos Polinémios de Le-
gendre. De (40) asseguramos que os unicos coeficientes G(m,m’), mostrados em (38),

diferentes de zero sgo aqueles com m = m' = +1/2.
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Apéndice B: As Integrais [, (krR)

As integrais definidas em (32), até onde conhecemos, sempre foram calculadas no limite
assintotico R — oo. Utilizando métodos de Andlise Complexa e Computacionais, nos re-
solvemos todas de forma exata, e analitica, para qualquer separagéo iénica R. Denotando

r = krR e Si(r) a fungdo seno integral, temos, a menos de um fator multiplicativo = /16,

Ioo = 2rcos2r —sin2r
Ino = —12r —2rcos2r + 7sin2r — 12[Si(2r) — 25i(r)]
: . , 420 210, . .
Toy = 407 + 2rcos2r — 21 sin 2r + 180[Si(2r) — 2Si(r)] + —(1 — cosr) + —(sin2r — 2sinr)
r r

Iy = 12r —2rcos2r + 7sin2r — 125i(2r)

36 18
Iy = 2rcos2r — 13sin2r — 12[8i(2r) — Si(r)] + —(cosr — cos2r) — —(2sinr — sin 2r)
r r
. . , 15
Iy = —28r —2rcos2r+ 27sin2r — 9[85i(2r) — 155i(r)] + — (8 cos 2r 4+ 13 cosr)
r
15 630 315
+ T—z(sinr — 32sin2r) + ?(cosr — cos2r) + F(Sin 2r — 2sinr)
420 210
Iy = —40r +2rcos2r — 21sin2r + 1805i(2r) — — + —-sin2r
r r

15
Iy = 28r —2rcos2r + 27sin 2r — 9[854(2r) — Si(r)] + — (8 cos 2r — cos )
r

630 15
+ 7"_2(15 sinr — 32sin 2r) + F(cosr —cos2r) + F(Sin 2r — 2sinr)

20
Iy = 2rcos2r —41sin2r — 40[Si(2r) — Si(r)] — —(20 cos 2r + cosr)

r
0 : . 50 75 . :
+  —(29sin7 + 101 sin2r) + — (14 cosr + 133 cos 2r) + — (56 sinr — 175sin 2r)
r r r
14.700
+ (cosr — cos2r) + (sin2r — 2sinr)

7o
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