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Resumo

Obtivemos a energia de interação efetiva entre duas impurezas iônicas em um mar de elé-

trons. As impurezas são representadas por orbitais localizados 4f 1, que se hibridizam

com uma banda de condução metálica simétrica. Foi utilizado o formalismo de Coqblin-

Schrieffer,1 porém não restrito ao limite assintótico de íons muito afastados entre si, como

usual na literatura,1–3 mas sim válido para quaisquer separações iônicas. Também reestabe-

lecemos a simetria de troca do sistema para íons idênticos e recuperamos a hermiticidade

do Hamiltoniano efetivo ausente no procedimento original de Coqblin-Schrieffer.1 Essas

correções impactam significativamente nas contribuições de cada componente do momento

angular j = 5/2 para a energia efetiva de interação e consequentemente no ordenamento

ferromagnético ou anti-ferromagnético dos momentos localizados. Nossos resultados mos-

tram que todas as componentes exibem oscilação de Friedel, mesmo no limite assintótico,

e não apenas aquelas com mj = ±1/2 como apregoado na literatura.

Palavra-chave: Formalismo de Coqblin-Schrieffer. Interação RKKY. Cério.
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1 Introdução

O magnetismo de materiais contendo momentos magnéticos localizados, como por exem-

plo, em CeSb e CeBi, ou compostos semicondutores como CeOs2Al10 e CeRu2Al10, são

de grande interesse e de longa data vem sendo abordado por diferentes modelos teóricos.

Anisotropias, temperaturas críticas anômalas e outras propriedades são atribuídas às inte-

rações entre momentos localizados, cuja origem vem da superposição destes com estados

itinerantes de elétrons em banda de condução. Nosso objetivo é abordar o particular meca-

nismo de interação ilustrado na Figura (1) abaixo. Nele, um elétron localizado (linha cheia)

no íon (1) passa para a banda de condução (linha sinuosa), por meio da hibridização (•),

e em seguida passa para o estado localizado no íon (2). Ação semelhante ocorre na pas-

sagem de um elétron localizado em (2) para o íon (1). Isso resulta numa interação indireta

entre os dois íons, denominada RKKY, considerada um importante mecanismo, junto com

efeitos de campo cristalino, na explicação do magnetismo da matéria. Essa foi a suges-

tão de Siemann e Coopper em 1979,2 que utilizaram o formalismo de Coqblin e Schrieffer

(CS),1 o qual leva em conta não apenas graus de liberdade de spin, mas orbitais, especifica-

mente orbitais 4f 1, e portanto momentos angulares j = 5/2 ou 7/2. Uma característica que

se perpetuou após esses trabalhos pioneiros é a de considerar o limite assintótico de íons

muito afastados entre si, o que simplifica consideravelmente o cálculo de certas integrais

envolvendo funções de Bessel esféricas. Em particular, isso levou à conclusão que apenas

os estados com componente de momento angular ±1/2 contribuem para a energia efetiva

de interação RKKY.2,3 Utilizando integrações no plano complexo e códigos de manipulação

simbólica, fomos capazes de resolver exatamente e de forma analítica essas integrais, e

portanto quantificar a contribuição de cada componente de momento angular à interação

efetiva, para qualquer separação iônica. No curso dessa análise descobrimos que a formu-

lação original de CS não é invariante pela troca das posições dos dois íons, mesmo quando

idênticos. Nossa formulação contempla essa simetria. Seguimos de perto os procedimen-

tos de Coqblin-Scrieffer, que considera como ponto de partida o Modelo de Anderson para

uma impureza magnética embebida em uma banda de condução. Por meio de uma transfor-

mação de Schrieffer-Wolff, introduz o Hamiltoniano Kondo para uma impureza de spin-1/2.

Após transcrever esse Hamiltoniano para um sistema com graus de liberdade orbital, define-
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se um acoplamento efetivo entre impurezas adjacentes. Isso irá determinar a energia de

interação como função da separação e das componentes individuais de momento angular

de cada impureza.

Figura 1: Processo analisado neste trabalho em que elétrons localizados (linhas contínuas) em
íons adjacentes passam para a banda de condução (linhas sinuosas) e vice-versa, gerando um
acoplamento efetivo entre os íons. As componentes z do momento angular total dos íons, m e m′,
são trocadas no processo. Fonte: Elaborada pelo autor.

1.1 Modelo de Anderson e a Transformação de Schrieffer-Wolff

Nosso interesse é estudar sistemas com impurezas magnéticas interagindo com elétrons

itinerantes e construir um Hamiltoniano efetivo de interação entre pares de impurezas. O

Hamiltoniano do sistema terá três contribuições: H = Hbanho+Himp+Himp+banho. No modelo

proposto por P. W. Anderson em 1961,4 tem-se

Hbanho =
∑
~kσ

ε~kc
†
~kσ
c~kσ , (1)

Himp =
∑
σ

εff
†
σfσ + Uf †↑f↑f

†
↓f↓ , (2)

Himp+banho =
∑
~kσ

V~k(c
†
~kσ
fσ + f †σc~kσ) ; (3)

sendo que o termo Hbanho descreve uma banda de condução não magnética, onde ε~k é a

energia cinética de um elétron com vetor de onda ~k. O termo Himp é composto da energia

do estado localizado εf e da energia U relacionada à dupla ocupação desse estado, sendo

que U é da ordem de 6eV para orbitais tipo 4f .3 O termo Himp+banho descreve a hibridização

entre a banda de condução e os estados localizados, maior responsável pelo acoplamento

efetivo entre impurezas adjacentes. A Figura (2) esquematiza o Modelo de Anderson.

Em paralelo aos primeiros desenvolvimentos obtidos através do Modelo de Ander-
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(a) (b)

Figura 2: (a): Modelo de Anderson em que uma banda de condução de largura 2D semi preenchida
interage com um estado localizado via um termo de hibridização V . O estado localizado pode
ter ocupação nula, cuja energia é próxima a de Fermi, ocupação única, com energia εf , ou dupla
ocupação, com energia 2εf + U . Fonte: Elaborada pelo autor. (b): Processos de transferência
eletrônica que contribuem para o Efeito Kondo. Fonte: KHOMSKII5.

son, Jun Kondo, em 1964, conseguiu elucidar o chamado Efeito Kondo, observado pela

primeira vez na década de 1930, que consiste num mínimo na resistividade elétrica de li-

gas metálicas não magnéticas, como de Cu ou Au, contendo impurezas magnéticas, como

Fe ou Mn.6 Kondo constatou que esse mínimo era consequência direta da formação de

uma nuvem eletrônica ao redor do íon magnético em configuração anti-ferromagnética. O

Hamiltoniano que descreve essa interação é conhecido como Hamiltoniano Kondo:

HK =
∑
~kσ

ε~kc
†
~kσ
c~kσ − J ~s · ~S , (4)

onde J < 0 (comportamento anti-ferromagnético) é a integral de troca (exchange), ~s é a

densidade de spin dos elétrons de condução na posição do spin da impureza ~S.

Em 1966, J. R. Schrieffer e P. A. Wolff7 propuseram uma importante transformação so-

bre o Hamiltoniano de Anderson que elimina em primeira ordem em V o termo não diagonal

Himp+banho. O Hamiltoniano transformado passou a ser escrito como

HT = e−SHeS =⇒ HT = H0 +
1

2
[S,HV ] + O(V 2) , (5)

onde HV = Himp+banho, H0 = Himp +Hbanho e S é o gerador da Transformação de Schrieffer-

Wolff, o qual é obtido da relação [S,H0] = −HV . O cálculo de S é motivo de atenção ainda



7

hoje, como pode ser visto em Ref. (8) e (9), mas em geral é expresso como

S =
∑
~k,σ

(
V~k

ε~k − εf − U
f †−σf−σ +

V~k
ε~k − εf

(1− f †−σf−σ)

)
c†~kσfσ + h.c. . (6)

Utilizando essa expressão em (5), no limite de U muito grande, aparece, entre outros

termos, o Hamiltoniano Kondo dado em (4). Ambas as transições exemplificadas na Fi-

gura (2b) contribuem para a interação, contudo a dupla ocupação (transição 2) requer uma

energia U para ocorrer, a qual é muito grande,3,5 logo o termo Kondo prevalece.7

1.2 A Interação RKKY

A discussão da seção anterior é mais apropriada para estados tipo f , mais localizados que

os de tipo d, portanto com valores de hibridização moderados. Se aplica, então, a com-

postos a base de Cério, um lantanídeo com configuração eletrônica [Xe]4f 15d16s2. Seus

orbitais 5d e 6s são formadores de banda de condução, e podem se hibridizar com o orbital

4f , sendo a interação 5d− 4f mais intensa que a interação 6s− 4f .10 Como pode ser visto

na Figura (3a), o orbital 4f , o qual é responsável pelo magnetismo, é muito localizado, tendo

seu pico de densidade a pouco menos de um raio de Bohr do núcleo. Portanto, tal estado

pode ser considerado como o de um íon livre.11

(a) (b)

Figura 3: (a):Densidade de probabilidade das funções de onda do Cério, configuração
[Xe]4f15d16s2. Podemos notar o quão localizado é o nível 4f quando comparado aos demais. Fonte:
HEWSON11 . (b): Polarização dos spins dos elétrons de condução ao redor de uma impureza mag-
nética, induzindo uma interação, chamada de RKKY, entre dois momentos localizados adjacentes.
Fonte: COLEMAN12 .
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Sendo esses orbitais f tão localizados, eles não interagem diretamente entre si num

composto, mas podem interagir através de um mecanismo de troca, conhecido por intera-

ção RKKY, proposto inicialmente por M. A. Ruderman e C. Kitell em 195413 no contexto da

interação entre spins nucleares mediada por elétrons de condução, em seguida estendida

por T. Kasuya14 e Kei Yosida.15 Nessa interação, elétrons, ao interagirem com um dos esta-

dos localizados por meio da hibridização V , se polarizam, como no Efeito Kondo, de forma

anti-ferromagnética nas proximidades do íon; tal polarização oscila de forma amortecida

com a distância do íon polarizador (oscilação de Friedel).5,6,13 Outro íon nas proximidades

do primeiro será capaz de sentir essa polarização, assim gerando um acoplamento efetivo

entre ambos, o qual é de quarta ordem na hibridização.
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2 Procedimento de Coqblin-Schrieffer

B. Coqblin e J. R. Schrieffer desenvolveram um formalismo que leva em conta graus de

liberdade orbitais e de spin da impureza, portanto capaz de tratar o caso de orbitais f . Eles

partem do Hamiltoniano de Anderson com operadores escritos em termos das componen-

tes z dos momentos angulares l = 3 (nível f ) e de spin 1/2. Seguiremos aqui um caminho

alternativo, mais curto, para alcançar o mesmo resultado. Como vimos na seção anterior, a

Transformação de Schrieffer-Wolf aplicada ao Hamiltoniano de Anderson resulta no Hamil-

toniano Kondo. Partiremos desse Hamiltoniano e de forma conveniente vamos reescrevê-lo

em termos de operadores de momento angular.

2.1 Hamiltoniano de Interação de Troca

Para os casos de spin 1/2, os operadores ~s e ~S do Hamiltoniano Kondo, Eq. (4), podem ser

expressos em termos dos operadores fermiônicos fµ e c~kµ:

~S =
1

2

∑
νµ

f †µ~σµνfν e ~s =
1

2

∑
~k~qνµ

c†~kµ~σµνc~qν , (7)

sendo ~σ as matrizes de Pauli. Desta forma, calculando o produto em (4), encontramos

H =
∑
~kσ

ε~kc
†
~kσ
c~kσ − J

∑
~k,~q,σ,σ′

c†~kσ′c~qσ

(
f †σfσ′ − δσσ′

2

∑
σ′′

f †σ′′fσ′′

)
. (8)

A dinâmica contida nesse Hamiltoniano é ilustrada na Fig. (4).

Figura 4: Interação descrita pelo Hamiltoniano (8) quando (a) há troca de componentes de spin
entre o momento localizado (em azul) e o elétron de condução (em vermelho) e (b) quando não há
troca de componentes. Termos diretos, como (c†~k↑

c~q↑ + c†~k↓
c~q↓)(f

†
↑f↑ + f †↓f↓), não comparecem no

Hamiltoniano Kondo. Fonte: Elaborada pelo autor.
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Queremos transcrever a Eq. (8) para o nosso problema, que envolve elétrons de con-

dução com spin 1/2 e elétrons localizados com momento angular j, podendo ser j = 5/2

ou 7/2, resultado da soma de momento angular orbital l = 3 (orbital f ) com spin 1/2. O

multipleto j = 7/2 é desconsiderado na análise por ter energia maior que o primeiro por

aproximadamente 0.30 eV.3 Procedemos em duas etapas, primeiro trocando σ = ±1/2

por |m| ≤ 5/2. Porém, [Jz, ~p] = [Lz, ~p] 6= 0 o que não permite conhecer a componente

z do momento angular total, m, e o vetor momento linear do elétron de condução, ~k, si-

multaneamente,16 e portanto, usar ambos os índices na soma em (8). Mas sabemos que

[J2, p2] = [Jz, p
2] = 0, o que nos permite conhecer simultaneamente j, m e k. Então, a

transcrição da Eq. (8) fica (note que é o módulo de ~k que aparece nos operadores)

H =
∑
km

εkc
†
kmckm − J

∑
k,q,m,m′

c†km′cqm

(
f †mfm′ − δm,m′

2j + 1

j∑
m′′=−j

f †m′′fm′′

)
, (9)

sendo o fator 2j + 1 resultado do fato do Hamiltoniano acima não descrever interações

diretas, o que leva ao traço do mesmo ser nulo (ver legenda da Fig. (4)).

Na segunda etapa da transcrição, escrevemos os operadores de condução ck,m e c†k,m
de volta na base de ondas planas, usando a relação c†k,m =

∑
~kσ 〈~kσ|km〉 c

†
~kσ

:1,16

H =
∑
~kσ

ε~kc
†
~kσ
c~kσ −

∑
~k~qσσ′mm′

Jm,m′

~k~qσσ′ c
†
~qσ′c~kσO

m,m′
, (10)

onde

Omm′
=

(
f †mfm′ − δm,m′

2j + 1

j∑
m′′=−j

f †m′′fm′′

)
. (11)

e

Jm,m′

~k~qσσ′ = J〈~kσ|km〉〈qm′|~qσ′〉 . (12)

Para explicitar a dependência angular desse termo de interação, vamos escrever o es-

tado de onda plana |~kσ〉 na base das ondas parciais |k, l,ml, σ〉, onde ml é a componente z

do momento angular orbital, |ml| ≤ l, e σ é a componente z do spin do elétron de condução.
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Portanto o estado |~kσ〉 escrito em termos de |k, l,ml, σ〉 é

|~kσ〉 =
√

4π
∑
l,ml

ilY∗l,ml
(k̂)|k, l,ml, σ〉 , (13)

onde Yl,ml
(k̂) é a função Harmônico Esférico.1 No caso do orbital 4f 1 os coeficientes de

Clebsch-Gordan para a escrita de |km〉 na base de |k, l,ml, σ〉 são αm =
√

(7 + 2m)/14

e βm =
√

(7− 2m)/14, onde m é a componente z do momentum angular total, |m| ≤ j.

Portanto, obtemos

|km〉 = αm|k, 3,m+ 1/2,−1/2〉+ βm|k, 3,m− 1/2,+1/2〉 . (14)

Levando ambas as relações acima em (12) temos

Jm,m′

~k~qσ,σ′ = 4πJ
(
αm′ Y3,m′+1/2(q̂) δσ′,−1/2 + βm′ Y3,m′−1/2(q̂) δσ′,1/2

)
·

·
(
αm Y∗3,m+1/2(k̂) δσ,−1/2 + βm Y∗3,m−1/2(k̂) δσ,1/2

)
.

(15)

As Eq. (10), (11) e (15) concordam exatamente com as de Coqblin-Schrieffer.1 No

entanto, esses autores não obedeceram a seguinte propriedade:

(
Jm,m′

~k~q,σσ′

)∗
= Jm′,m

~q~k,σ′σ
6= Jm′,m

~k~q,σσ′ , (16)

o que acarretou a falta de simetria por intercâmbio dos íons e a não hermiticidade do Ha-

miltoniano efetivo obtido por eles. A Ref. (3) menciona brevemente a falta da hermiticidade

e simplesmente simetriza o Hamiltonianoa. Nosso procedimento a seguir, no entanto, é

naturalmente livre dessas falhas.

2.2 Interação RKKY entre duas impurezas

Até agora tratamos o problema em que existe apenas uma impureza "mergulhada" em um

mar de elétrons de condução e cuja Física é dada pelo Hamiltoniano (10). Contudo, que-

remos calcular como duas impurezas interagem entre si por meio da polarização dos spins
aDescobrimos essa referência há poucos dias do término desta monografia.
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dos elétrons de condução, a interação RKKY. Para isso devemos acrescentar na equação

(10) a segunda impureza fazendo a substituição dos operadores de condução c~kσ, que des-

troem elétrons na origem, por ei~k·~Rnc~kσ, que destroem elétrons na posição ~Rn. Desta forma,

o segundo termo do Hamiltoniano em (10) fica

Hint ≡ −
∑
~k~q,σσ′

∑
mm′

2∑
n=1

Jm,m′

~k~qσσ′e
i(~k−~q)· ~Rnc†~qσ′c~kσO

m,m′

n . (17)

Como estamos interessados apenas na interação efetiva entre duas impurezas, toma-

mos o traço parcial do operador acima com relação aos elétrons de condução. Isso define

o Hamiltoniano

H12 =
∑
~k,σ

〈〈~kσ|Hint|~kσ〉〉g~k , (18)

onde a função de Fermi g~k expressa que a soma é sobre estados ocupados. |~kσ〉〉 é um

estado de onda plana que leva em conta a interação Hint. Por teoria de perturbação de

primeira ordem nos estados de ondas planas, temos

|~kσ〉〉 = |~kσ〉+
∑
~q,σ

〈~qσ|Hint|~kσ〉
ε~k − ε~q

(1− g~q)|~qσ〉 , (19)

que substituindo em (18) resulta em:1

H12 =
∑
~k~q,σσ′

〈~kσ|Hint|~qσ′〉〈~qσ′|Hint|~kσ〉
ε~k − ε~q

g~k(1− g~q) . (20)

Utilizando (17) calculamos os elementos de matriz presentes em H12:

〈~kσ|Hint|~qσ′〉 =
∑
MM ′n

JM,M ′

~k~qσσ′ e
i(~k−~q)· ~RnOM,M ′

n ; (21)

〈~qσ′|Hint|~kσ〉 =
∑
mm′n

Jm,m′

~q~kσ′σ
e−i(

~k−~q)· ~RnOm′,m
n . (22)
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Efetuando a soma sobre n encontramos

H12 =
∑
~k~q,σσ′

∑
MM ′,mm′

g~k(1− g~q)
ε~k − ε~q

Jm,m′

~k~qσσ′J
M,M ′

~q~kσ′σ
(OM,M ′

1 Om,m
′

1 +OM,M ′

2 Om,m
′

2 +

ei(
~k−~q)·~ROM,M ′

1 Om,m
′

2 + e−i(
~k−~q)·~ROm,m

′

1 OM,M ′

2 ) ,

(23)

onde ~R ≡ ~R2 − ~R1. Esse Hamiltoniano exibe a simetria H12(−~R) = H12(~R) graças à propri-

edade (Om,m′
n )† = Om′,m

n , o que leva a H†12 = H12 como deveria ser. No trabalho pioneiro de

Coqblin-Schrieffer essa simetria não é satisfeita e nem o Hamiltoniano é hermitiano! Essas

falhas, no entanto, são de muito pouca relevância no limite assintótico kFR → ∞ tratado

por eles, e em trabalhos subsequentes até onde conhecemos.

No Hamiltoniano H12 temos todas as trocas de m e m′ possíveis, inclusive aquelas

descorrelacionadas entre as impurezas. Contudo, estamos interessados em uma forma es-

pecífica, aquela mostrada na Fig. (1), onde as impurezas trocam entre si suas componentes

z do momento angular total. Precisamos, portanto, extrair de (23) o termo do Hamiltoniano

que descreve esse processo de interesse levando em conta a conservação do momento

angular total, garantida pelo fato da banda de condução ser simétrica ao redor do eixo de

quantização.3,17 Através de mudanças convenientes nos índices da soma em Eq. (23),

ficamos com o seguinte Hamiltoniano efetivo:

Hef =
∑
m,m′

Am′mOm
′,m

1 Om,m
′

2 , (24)

com

Am′m(~R) =
∑
~k~q,σσ′

g~k
ε~k − ε~q

[∣∣∣Jm,m′

~k~qσσ′

∣∣∣2 ei(~k−~q)·~R +
∣∣∣Jm′,m

~k~qσσ′

∣∣∣2 e−i(~k−~q)·~R] , (25)

onde usamos que o termo g~kg~q/(ε~k − ε~q) presente em (23) não contribui à soma por ser

ímpar pela troca de ~k por ~q (e também devido à propriedade expressa em (16)).

Am′m(~R) é a energia de interação (as vezes denominada de amplitude de espalha-

mento) em função da separação ~R entre os íons associada à troca m′ para m no íon em

~R1 e a correspondente troca de m para m′ no íon em ~R2. Podemos melhorar o formato de

(25) expandindo as ondas planas em termos dos Polinômios de Legendre, Pl(cosθ), e das
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Funções de Bessel Esféricas, jl(kr):

ei
~k·~r =

∞∑
l=0

il(2l + 1)jl(kr)Pl(cosθ) . (26)

O fator il nessa expressão foi esquecido por Coqblin e Schrieffer em,1 o que levou a erros

na energia final. Tal falha foi detectada e reparada por Siemann e Cooper em 1980.2 Desta

forma, a Eq. (25) fica

Am,m′(~R) =
∑
l,l′

il+l
′
(2l + 1)(2l′ + 1)

∑
~k~q,σσ′

g~k
ε~k − ε~q

jl(kR)jl′(qR)

Pl(cos(θk))Pl′(cos(θq))[ |Jm,m′

~k~q,σσ′|
2 + (−1)l+l

′ |Jm′,m
~k~q,σσ′|

2 ] .

(27)

Podemos trocar as somas sobre ~k e ~q presentes em (27) por integrais, já que os

elétrons estão numa banda de condução de largura aproximada de 10 eV e são da ordem

de 1023 em número:

∑
~k

→ V

(2π)3

∫
d3~k . (28)

Com isso e usando a relação de dispersão para elétrons livres, ε~k = h̄2k2/2m∗, onde

m∗ é a massa efetiva dos elétrons de condução, encontramos a expressão final para a

energia de interação Am′,m:

Am′,m(R) =
V 2m∗J2

2π4h̄2R4

∑
l,l′=0,2,4

(−1)
l+l′
2 (2l + 1)(2l′ + 1)Bl,mBl′,m′(Il,l′ + Il′,l) , (29)

onde

Blm = α2
mC

m+1/2
l + β2

mC
m−1/2
l , (30)

com

Cm
l =

∫
Pl(cosθ) |Y m

3 (θ, φ)|2 dΩ (31)

coeficientes (de Slater), que pela regra de soma de três momentos angulares, são não

nulos apenas para l = 0, 2, 4 ou 6.17,18 No Apêndice A listamos os valores de Cm
l bem como
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resultados para Bl,m. É fácil ver que Bl,−m = Bl,m, o que acarreta Am′,m = A|m′|,|m|. O cálculo

explicito usando as tabelas do Apêndice A mostra que B6m são todos nulos, o que justifica

os índices de soma em (29) correrem apenas para l = 0, 2 ou 4.

Em (29) foram também definidas as integrais

Il,l′(R) =

∫ kFR

0

x2jl(x)dx

∫ ∞
0

x′2

x2 − x′2
jl′(x

′)dx′ , (32)

cujos resultados analíticos se encontram no Apêndice B. No formalismo de Coqblin e Sch-

rieffer,1 e nos trabalhos que se seguiram,2,3 somente o limite assintótico R → ∞ dessas

integrais foram utilizados.

O procedimento de Coqblin-Schrieffer1 (já corrigido pelo fator il)2 levou à seguinte

expressão para a energia de interação entre os estados localizados:

Em,m′
(R) =

V 2m∗J2

π4h̄2R4

∑
l,l′=0,2,4

(−1)(l+l
′)/2 (2l + 1)(2l′ + 1) Bl,mBl′,m′ Il,l′ , (33)

onde os coeficientes Bl,m e Il,l′(R) são os mesmos que em (30) e (32). Encontraram ainda

o seguinte Hamiltoniano para a interação entre as impurezas (o correspondente do nosso

Hamiltoniano em (24)):

H ′ef =
∑
m,m′

Em′m(R)Om
′,m

1 Om,m
′

2 . (34)

É fácil observar que a expressão para a energia em (33) carrega uma propriedade

que viola o fato dos íons serem idênticos: Em,m′ 6= Em′,m. Isso acarreta diretamente na não

hermiticidade do Hamiltoniano acima: H ′ef
† 6= H ′ef . Essa falha vem da não observação da

desigualdade mostrada em (16). No entanto, ela é pouco importante no limite assintótico

por isso, achamos, nunca chamou atenção dos que nos precederam. Note que a energia

de interação Am,m′ é a forma simetrizada de Em,m′: o aparecimento de Il,l′ + Il′,l em (29), ao

invés de Il,l′ como em (33), é o que garante a simetria de troca dos íons, a hermiticidade de

Hef , além de cancelar termos não oscilatórios em kFR e assim recuperar a forma típica de

interações RKKY, como veremos em detalhe abaixo.
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Tomando as funções de Bessel Esféricas no limite assintótico, R→∞,

jl(kR) ' (−1)l/2
sen(kR)

kR
, (35)

as integrais em (32) são facilmente resolvidas:

Il,l′(R) ' πk4F (−1)(l+l
′)/2 cos(2kFR)

(2kFR)3
. (36)

Substituindo em (33), a energia de interação para íons muito separados é, portanto,

Em,m′

CS (R) =

(
V 2m∗J2k4F

π3h̄2

)
G(m,m′)

cos(2kFR)

(2kFR)3
, R→∞, (37)

onde

G(m,m′) =
∑
l

(2l + 1)Blm

∑
l′

(2l′ + 1)Bl′m′ , (38)

cujos únicos valores não nulos são G(±1/2,±1/2) = 9, isto é, para m = ±1/2, ou seja,

estados com ml = 0, como pode ser facilmente obtido usando (40). Isso concorda com o

cálculo da Ref. (2), que interpreta que nesse limite assintótico apenas os estados com maior

densidade de carga eletrônica na linha que une os orbitais localizados devem contribuir, e

esses são os estados comml = 0, aqueles com simetria esférica. A expressão (37) mostra o

comportamento assintótico cos(2kFR)/R3 da interação RKKY, bem conhecido dos sistemas

com impurezas de spin.
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3 Resultados

As nove integrais definidas em (32) e listadas no Apêndice B são a grande dificuldade

do cálculo para as energias de interação exatas. Tais integrais envolvem funções não muito

triviais, as Funções de Bessel Esféricas, e singularidades no eixo dos reais, o que nos levou

a cálculos usando o plano complexo, além de fazer uso de ferramentas computacionais

como o Wolfram e o Maple. O cálculo exato, contudo, permite que calculemos as energias

de interação Am,m′(R) para qualquer separação inter-iônica R.
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Figura 5: Energias de Interação Am′,m, em unidades arbitrárias, para diferentes pares m e m′. A
escala do eixo vertical foi modificada com a distância para melhor visualizar as mudanças ao longo
do intervalo de interesse. As demais componentes são obtidas da relação Am,m = Am′,m = A|m′|,|m|.
Fonte: Elaborada pelo autor.

Na Figura (5) temos nosso resultado principal, as energias de interação em função

da separação entre os íons para diferentes pares m e m′. Sinais negativos (positivos) de

Am,m′ indicam ordenamento ferromagnético (anti-ferromagnético). Desta forma, podemos

observar que o ordenamento oscila em função da separação, o que já era esperado, visto

que os íons polarizam os elétrons de condução de forma que as direções dos seus spins
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oscilam (oscilação de Friedel) em função da distância aos íons.

Para kFR ≤ 1 o ordenamento é sempre ferromagnético para todos os m e m′. Isso por-

que os elétrons de condução ordenam-se ao redor da impureza de forma anti-ferromagnética,

portanto, quando os íons estão muito próximos suas nuvens de elétrons de condução se

sobrepõem favorecendo o ordenamento dos estados localizados na mesma direção. Nessa

região podemos ainda notar que as componentes m = ±5/2 dominam sobre as demais; as

menores são as associadas à m = ±3/2.

Na região de 2 ≤ kFR ≤ 5 os termos oscilatórios ganham força. A energia de interação

A±5/2,±5/2 domina sobre as demais até por volta de kFR = 3, onde a partir desse ponto vai a

zero rapidamente, dado que é a componente que menos favorece o empilhamento de carga

sobre o eixo. Para as outras componentes temos um ordenamento anti-ferromagnético na

maior parte dessa região.
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0.04 A1/2, 1/2
E1/2, 1/2
CS

Figura 6: Energia de Interação A1/2,1/2 (linha contínua) e Energia de Interação E1/2,1/2 no limite
assintótico (linha tracejada), R → ∞. Podemos observar que o resultado assintótico é compatível,
em amplitude e fase, com o resultado exato para valores de KFR > 20. Fonte: Elaborada pelo autor.

Em 5 ≤ kFR ≤ 10 as energias relacionadas à m = ±5/2 são muito pequenas, sendo

A±3/2,±3/2 dominante para 5 ≤ kFR ≤ 6 e com um comportamento fortemente ferromagné-

tico. Após esse intervalo, por volta de kFR ' 7, a componente A±1/2,±1/2 se torna dominante
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seguida de perto pelas componentes A±1/2,±3/2.

Para a região de kFR ≥ 10 ganhamos o limite assintótico já conhecido e calculado

em2 onde a componente A±1/2,±1/2 é a dominante, alternando o ordenamento magnético

com a separação iônica. Podemos ainda identificar a presença das componentes A±1/2,±3/2

e A±3/2,±3/2 em ordem de importância, com a segunda tendo uma amplitude de apenas

aproximadamente um quarto da componente dominante A±1/2,±1/2, sendo, portanto, rele-

vante em cálculos mais finos do ordenamento a longas distâncias.

Os valores típicos de kFR para os compostos de interesse estão em kFR ≥ 10, re-

gião na qual a componente A±1/2,±1/2 domina sobre as demais, entretanto, a componente

A±1/2,±3/2 possui uma amplitude de aproximadamente um quarto da amplitude de A±1/2,±1/2

fazendo-se, assim, importante considerar essa componente em cálculos mais precisos.

0 2 4 6 8−15

−10

−5

0

5

10

15

A 1
/2
,3
/2

k
10 12 14 16 18 20

−1.0

−0.5

0.5

1.0

FR

A1/2, 3/2
E1/2, 3/2

Figura 7: Energia de interação A1/2,3/2 exata (linha contínua) onde se vê a típica oscilação RKKY.
Já a energia de interação E1/2,3/2 (linha pontilhada), diferentemente, exibe apenas comportamento
ferromagnético no limite assintótico. Fonte: Elaborada pelo autor.

Na Figura (6) comparamos o limite assintótico, dado pela Eq. (37), com a solução

exata para m = m′ = ±1/2. Podemos observar que na região de kFR ≤ 10 ambas as

energias discordam tanto em amplitude quanto em fase, portanto, a aproximação em (36)

não é muito boa, sendo necessário incluir outros termos nesta equação. Contudo, na região
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de kFR ≥ 10 as amplitudes começam a se igualar e entrar em fase com o aumento de R.

É nessa região que se encontram os valores típicos de kFR e, portanto, a aproximação

feita na literatura é boa, mas para uma análise quantitativa mais fina necessita-se, além de

outras componentes que não a m ± 1/2, de correções relevantes, já que a aproximação

somente é satisfatória para kFR ≥ 20.

Se a componente diagonal E1/2,1/2 no limite assintótico não vai mal, o mesmo não

podemos dizer das não diagonais. A Fig. (7) mostra que para |m| = 1/2 e |m′| = 3/2 o

resultado exato exibe a oscilação característica da interação RKKY, reflexo da oscilação de

Friedel, enquanto E1/2,3/2 comporta-se exclusivamente de forma ferromagnética para além

de kFR ≈ 3. Esse padrão se repete para outras componentes não diagonais.
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4 Conclusão

Calculamos a energia de interação entre dois íons separados por uma distância R utilizando

o formalismo de Coqblin-Schrieffer,1 sem se restringir ao limite assintótico, R → ∞. Nosso

procedimento preserva a simetria de troca dos íons e a hermiticidade do Hamiltoniano efe-

tivo. A solução exata das integrais em (32) nos possibilitou investigar o ordenamento mag-

nético dos íons em função de sua separação e inferir a contribuição de cada componente de

j = 5/2 para a energia. No limite assintótico recuperamos os resultados conhecidos da lite-

ratura, que mostram a predominância das componentes diagonais m = m′ = ±1/2 sobre as

demais. Ainda nesse limite, nossa expressão para as componentes não diagonais exibem

o comportamento oscilatório típico de interações RKKY, diferentemente do procedimento

original de Coqblin-Schrieffer. O próximo passo de interesse é aplicar uma rotação no eixo

de quantização que une ambos os íons para uma direção comum no cristal, e assim poder

fazer uma análise do ordenamento magnético do composto como um todo.2,17 A matriz de

rotação irá misturar todas as componentes Am,m′, e por isso o cálculo exato, para qualquer

valor de kFR, será de grande valia.
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Apêndice A: Os coeficientes Cm
l e Blm

Os coeficientes Cm
l , definidos em (31), são as integrais de Slater,18 facilmente calculáveis

para os primeiros valores de l. Da regra de soma de três Harmônicos Esféricos temos que

Cl,m 6= 0 apenas para l = 0, 2, 4 ou 6 e |m| ≤ 3.17 É fácil ver que Cl,0 = 1 e que Cl,−m = Cl,m.

Essas propriedades são herdadas pelos coeficientes Bl,m (nestes |m| ≤ 5/2), implicando

que B0,m = 1 e Bl,−m = Bl,m. Os valores de interesse para os coeficientes Cm
l e Blm são

encontrados na Tabela (1) abaixo, onde vemos que todos os coeficientes B6,m são nulos, o

que acarreta em significativa economia de cálculo, uma vez que não há necessidade de se

calcular as extensas integrais Il,l′(R) para l e/ou l′ iguais a 6.

Tabela 1: Coeficientes Bl,m (esquerda) necessários em (29). E coeficientes Cl,m (direita).

m/l 0 2 4 6
1/2 1 8/35 22/231 0
3/2 1 4/70 -1/7 0
5/2 1 -2/7 1/21 0

m/l 0 2 4 6
0 1 4/15 6/33 100/429
1 1 1/5 1/33 -75/429
2 1 0 -7/33 30/429
3 1 -1/3 3/33 -5/429

Fonte: Elaborada pelo autor (esquerda). SLATER18 (direita).

Algumas propriedades algébricas, obtidas por nós, para os coeficientes Blm são mos-

tradas a seguir:

2

5/2∑
m=1/2

Blm = 7δl,0 − C0
l + (1− δl,0)

(
7δl,0 + C0

l

)
, (39)

6∑
l=0

(2l + 1)Blm = 7α2
mδm+1/2,0 + 7β2

mδm−1/2,0 . (40)

A primeira propriedade é consequência direta do Teorema da Soma de Harmônicos

Esféricos, enquanto a segunda é consequência da ortogonalidade dos Polinômios de Le-

gendre. De (40) asseguramos que os únicos coeficientes G(m,m′), mostrados em (38),

diferentes de zero são aqueles com m = m′ = ±1/2.
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Apêndice B: As Integrais Il,l′(kFR)

As integrais definidas em (32), até onde conhecemos, sempre foram calculadas no limite

assintótico R → ∞. Utilizando métodos de Análise Complexa e Computacionais, nós re-

solvemos todas de forma exata, e analítica, para qualquer separação iônica R. Denotando

r ≡ kFR e Si(r) a função seno integral, temos, a menos de um fator multiplicativo π/16,

I00 = 2r cos 2r − sin 2r

I02 = −12r − 2r cos 2r + 7 sin 2r − 12[Si(2r)− 2Si(r)]

I04 = 40r + 2r cos 2r − 21 sin 2r + 180[Si(2r)− 2Si(r)] +
420

r
(1− cos r) +

210

r2
(sin 2r − 2 sin r)

I20 = 12r − 2r cos 2r + 7 sin 2r − 12Si(2r)

I22 = 2r cos 2r − 13 sin 2r − 12[Si(2r)− Si(r)] +
36

r
(cos r − cos 2r)− 18

r2
(2 sin r − sin 2r)

I24 = −28r − 2r cos 2r + 27 sin 2r − 9[8Si(2r)− 15Si(r)] +
15

r
(8 cos 2r + 13 cos r)

+
15

r2
(sin r − 32 sin 2r) +

630

r3
(cos r − cos 2r) +

315

r4
(sin 2r − 2 sin r)

I40 = −40r + 2r cos 2r − 21 sin 2r + 180Si(2r)− 420

r
+

210

r2
sin 2r

I42 = 28r − 2r cos 2r + 27 sin 2r − 9[8Si(2r)− Si(r)] +
15

r
(8 cos 2r − cos r)

+
15

r2
(15 sin r − 32 sin 2r) +

630

r3
(cos r − cos 2r) +

315

r4
(sin 2r − 2 sin r)

I44 = 2r cos 2r − 41 sin 2r − 40[Si(2r)− Si(r)]− 20

r
(20 cos 2r + cos r)

+
20

r2
(29 sin r + 101 sin 2r) +

50

r3
(14 cos r + 133 cos 2r) +

75

r4
(56 sin r − 175 sin 2r)

+
14.700

r5
(cos r − cos 2r) +

7.350

r6
(sin 2r − 2 sin r)
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